\begin{tabbing} es\_realizer\_ind(\=$x_{1}$;\+ \\[0ex]${\it none}$; \\[0ex]${\it left}$,${\it right}$,${\it rec}_{1}$,${\it rec}_{2}$.${\it plus}$(${\it left}$;${\it right}$;${\it rec}_{1}$;${\it rec}_{2}$); \\[0ex]${\it loc}$,$T$,$x$,$v$.${\it init}$(${\it loc}$;$T$;$x$;$v$); \\[0ex]${\it loc}$,$T$,$x$,$L$.${\it frame}$(${\it loc}$;$T$;$x$;$L$); \\[0ex]${\it lnk}$,${\it tag}$,$L$.${\it sframe}$(${\it lnk}$;${\it tag}$;$L$); \\[0ex]${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$.${\it effect}$(${\it loc}$;${\it ds}$;${\it knd}$;$T$;$x$;$f$); \\[0ex]${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$.${\it sends}$(${\it ds}$;${\it knd}$;$T$;$l$;${\it dt}$;$g$); \\[0ex]${\it loc}$,${\it ds}$,$a$,$p$,$P$.${\it pre}$(${\it loc}$;${\it ds}$;$a$;$p$;$P$); \\[0ex]${\it loc}$,$k$,$L$.${\it aframe}$(${\it loc}$;$k$;$L$); \\[0ex]${\it loc}$,$k$,$L$.${\it bframe}$(${\it loc}$;$k$;$L$); \\[0ex]${\it loc}$,$x$,$L$.${\it rframe}$(${\it loc}$;$x$;$L$)) \-\\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=case $x_{1}$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it none}$\+ \\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it plus}$\=($x$.1\+\+ \\[0ex];$x$.2 \\[0ex];es\_realizer\_ind(\=($x$.1);\+ \\[0ex]${\it none}$; \\[0ex]${\it left}$,${\it right}$,${\it rec}_{1}$,${\it rec}_{2}$.${\it plus}$\=(${\it left}$\+ \\[0ex];${\it right}$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]${\it loc}$,$T$,$x$,$v$.${\it init}$(${\it loc}$;$T$;$x$;$v$); \\[0ex]${\it loc}$,$T$,$x$,$L$.${\it frame}$(${\it loc}$;$T$;$x$;$L$); \\[0ex]${\it lnk}$,${\it tag}$,$L$.${\it sframe}$(${\it lnk}$;${\it tag}$;$L$); \\[0ex]${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$.${\it effect}$\=(${\it loc}$\+ \\[0ex];${\it ds}$ \\[0ex];${\it knd}$ \\[0ex];$T$ \\[0ex];$x$ \\[0ex];$f$); \-\\[0ex]${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$.${\it sends}$\=(${\it ds}$\+ \\[0ex];${\it knd}$ \\[0ex];$T$ \\[0ex];$l$ \\[0ex];${\it dt}$ \\[0ex];$g$); \-\\[0ex]${\it loc}$,${\it ds}$,$a$,$p$,$P$.${\it pre}$(${\it loc}$;${\it ds}$;$a$;$p$;$P$); \\[0ex]${\it loc}$,$k$,$L$.${\it aframe}$(${\it loc}$;$k$;$L$); \\[0ex]${\it loc}$,$k$,$L$.${\it bframe}$(${\it loc}$;$k$;$L$); \\[0ex]${\it loc}$,$x$,$L$.${\it rframe}$(${\it loc}$;$x$;$L$)) \-\\[0ex];es\_realizer\_ind(\=($x$.2);\+ \\[0ex]${\it none}$; \\[0ex]${\it left}$,${\it right}$,${\it rec}_{1}$,${\it rec}_{2}$.${\it plus}$\=(${\it left}$\+ \\[0ex];${\it right}$ \\[0ex];${\it rec}_{1}$ \\[0ex];${\it rec}_{2}$); \-\\[0ex]${\it loc}$,$T$,$x$,$v$.${\it init}$(${\it loc}$;$T$;$x$;$v$); \\[0ex]${\it loc}$,$T$,$x$,$L$.${\it frame}$(${\it loc}$;$T$;$x$;$L$); \\[0ex]${\it lnk}$,${\it tag}$,$L$.${\it sframe}$(${\it lnk}$;${\it tag}$;$L$); \\[0ex]${\it loc}$,${\it ds}$,${\it knd}$,$T$,$x$,$f$.${\it effect}$\=(${\it loc}$\+ \\[0ex];${\it ds}$ \\[0ex];${\it knd}$ \\[0ex];$T$ \\[0ex];$x$ \\[0ex];$f$); \-\\[0ex]${\it ds}$,${\it knd}$,$T$,$l$,${\it dt}$,$g$.${\it sends}$\=(${\it ds}$\+ \\[0ex];${\it knd}$ \\[0ex];$T$ \\[0ex];$l$ \\[0ex];${\it dt}$ \\[0ex];$g$); \-\\[0ex]${\it loc}$,${\it ds}$,$a$,$p$,$P$.${\it pre}$(${\it loc}$;${\it ds}$;$a$;$p$;$P$); \\[0ex]${\it loc}$,$k$,$L$.${\it aframe}$(${\it loc}$;$k$;$L$); \\[0ex]${\it loc}$,$k$,$L$.${\it bframe}$(${\it loc}$;$k$;$L$); \\[0ex]${\it loc}$,$x$,$L$.${\it rframe}$(${\it loc}$;$x$;$L$))) \-\-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it init}$($x$.1;($x$.2).1;($x$.2.2).1;$x$.2.2.2)\+ \\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it frame}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];($x$.2.2).1 \\[0ex];$x$.2.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it sframe}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];$x$.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it effect}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];($x$.2.2).1 \\[0ex];($x$.2.2.2).1 \\[0ex];($x$.2.2.2.2).1 \\[0ex];$x$.2.2.2.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it sends}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];($x$.2.2).1 \\[0ex];($x$.2.2.2).1 \\[0ex];($x$.2.2.2.2).1 \\[0ex];$x$.2.2.2.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it pre}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];($x$.2.2).1 \\[0ex];($x$.2.2.2).1 \\[0ex];$x$.2.2.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it aframe}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];$x$.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ \=case $x$\+ \\[0ex]o\=f inl($x$) =$>$ ${\it bframe}$\=($x$.1\+\+ \\[0ex];($x$.2).1 \\[0ex];$x$.2.2) \-\\[0ex]$\mid$ inr($x$) =$>$ ${\it rframe}$\=($x$.1\+ \\[0ex];($x$.2).1 \\[0ex];$x$.2.2) \-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\\[0ex]\emph{(recursive)} \end{tabbing}